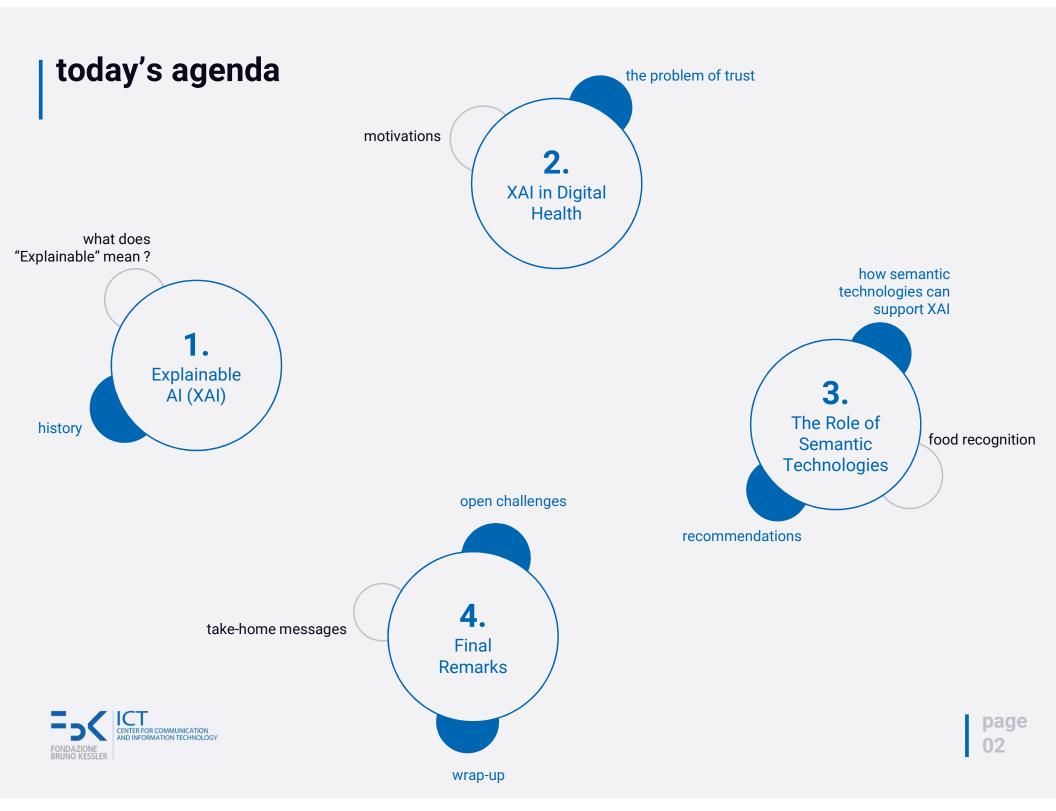


Achieving Explainable AI Through Semantic Technologies: Challenges and Future Directions in Digital Health

Mauro Dragoni

Fondazione Bruno Kessler Process and Data Intelligence Research Unit Health and Wellbeing High Impact Initiative

University of Luxembourg, Luxembourg April 19th, 2021

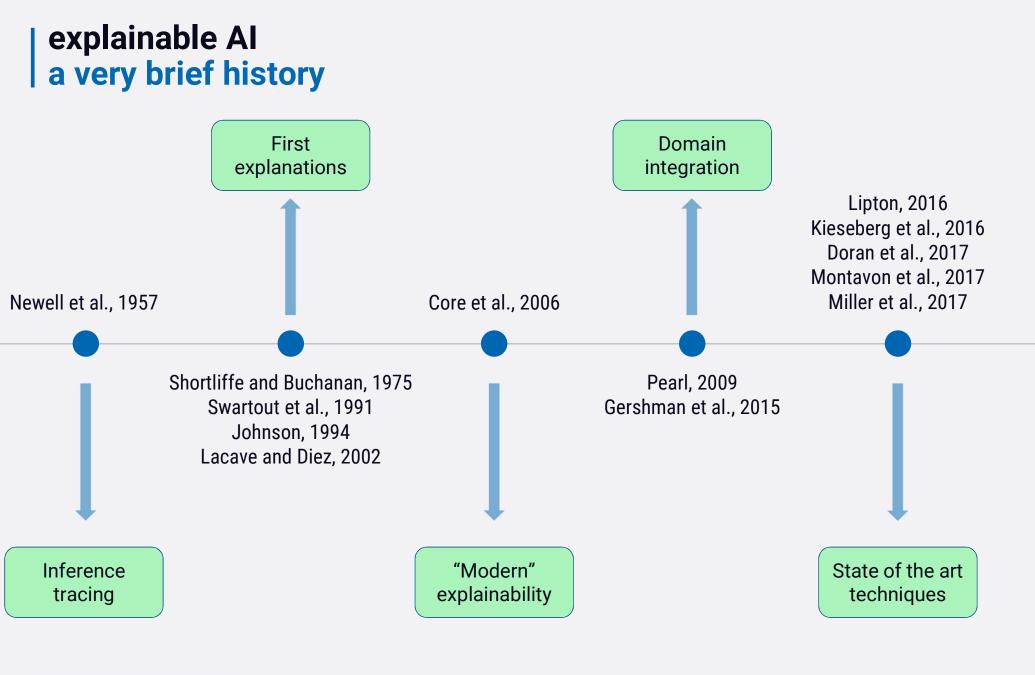


the main question

Is Explainable AI the enabler for adopting artificial intelligence within many domains for supporting our daily lives?

explainable Al an overview

What is an **explainable system**, which are its **requirements** and how the research community is working on them?

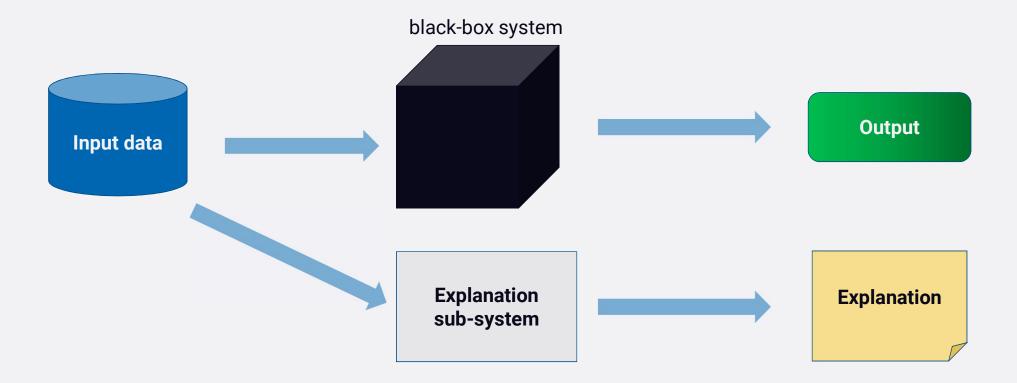


explainable AI a general view

- No formal, technical, agreed upon definition.
- Comprehensive philosophical overview out of scope of this seminar (Miller, 2017)
- Not limited to machine learning!

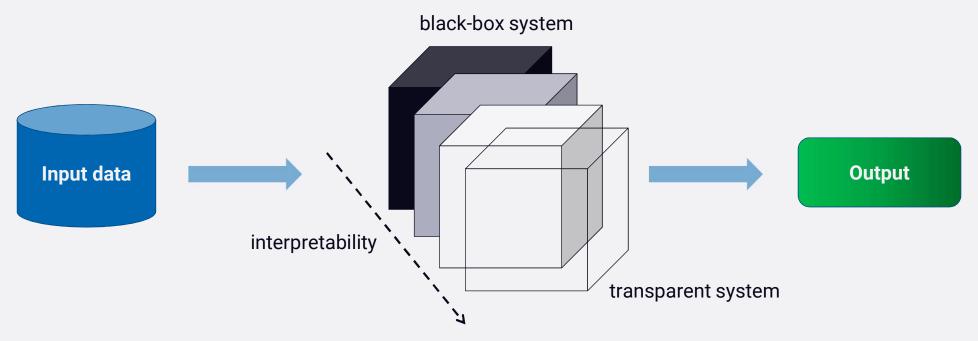
- Two main perspectives:
 - 1. Post-hoc explanation: it explains why a black-box model behaved in that way.
 - 2. **Transparent design**: it reveals how a model works (also know as ante-hoc explanation).

explainable AI post-hoc explanation



- Post-hoc explanations can be unreliable.
- Low **Understandability** and Low **Transparency**.

explainable AI transparent design



- Three levels of transparency:
 - 1. Simultability
 - 2. Decomposability
 - 3. Algorithmic Transparency
- High Understandability and High Interpretability.

explainable AI considerations

With thousands features DNNs perform better: is post-hoc explanation the only way?

Design white-box, interpretable models straight away!

Desirable properties of XAI: Informativeness Low cognitive load Usability Fidelity Robustness Non-misleading Interactivity/Conversational

explainable AI from theory to practice

page 010

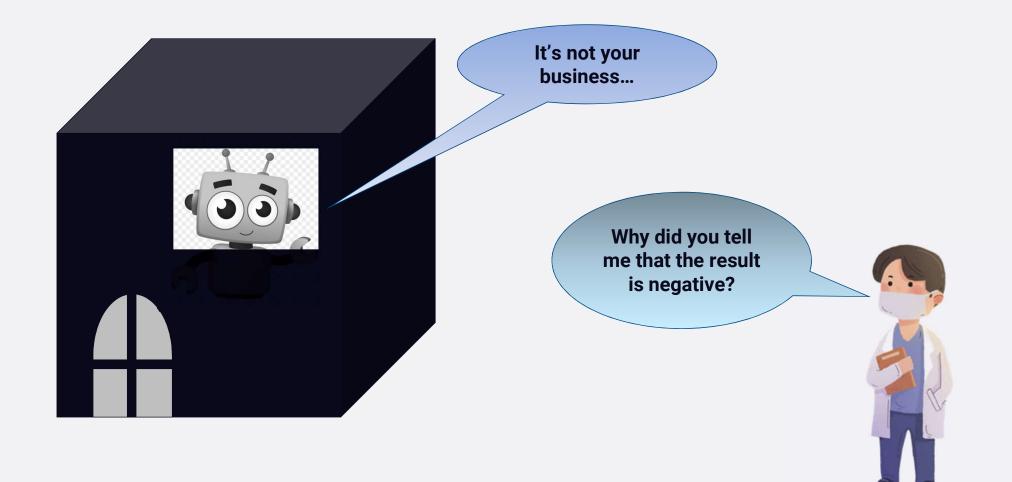
explainable AI and digital health an overview

Why are the **challenges of XAI** amplified within **real-world domains** and in particular within the **Digital Health** one?

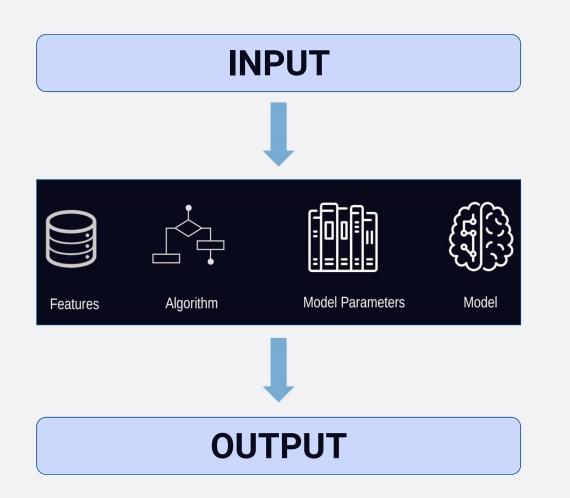
XAI in Digital Health when do we need explanations?

- <u>When fairness is critical</u>: any context where humans are required to provide explanations so that people cannot hide behind machine learning models.
- When consequences are far-reaching: predictions can have far reaching consequences; e.g., recommend an operation, recommend sending a patient to hospice etc.
- When the cost of a mistake is high: e.g., misclassification of a malignant tumor can be costly and dangerous
- When a new/unknown hypothesis is drawn: e.g. "Pneumonia patients with asthma had lower risk of dying"

XAI in Digital Health a problem with trust



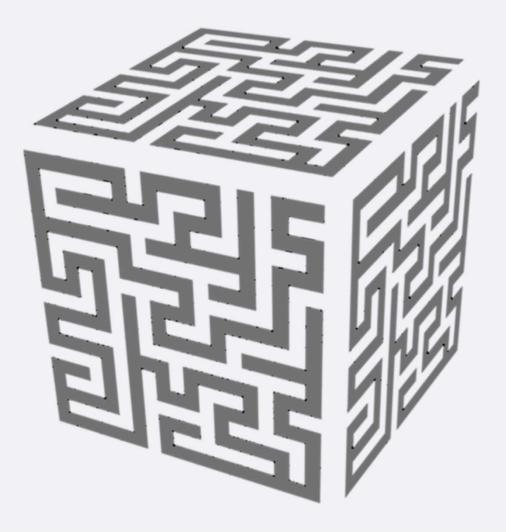
XAI in Digital Health a problem with trust



Examples of physicians' desiderata:

- To have the certainty that specific input data provide a specific output.
- To have the possibility of changing dynamically the cautiousness of the model.
- To understand how each single feature is treated by the model.

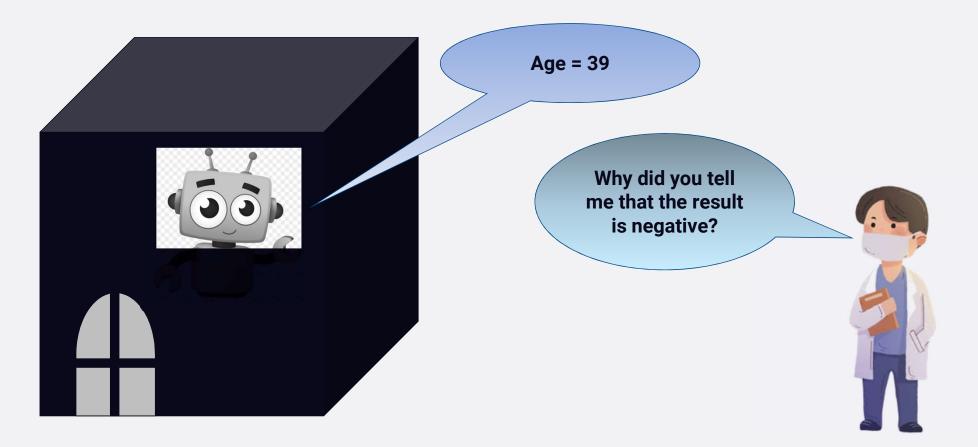
XAI in Digital Health does more transparency mean more trust?



Finding the reason of this result is driving me crazy.

XAI in Digital Health explanations are role based

• Explanations have to be meaningful.



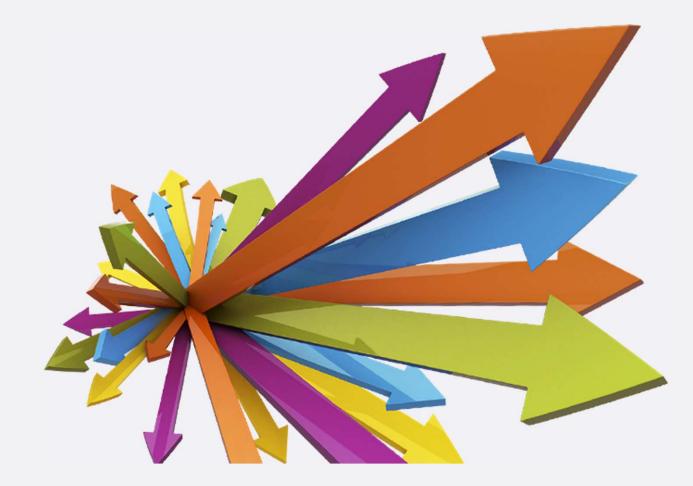
XAI in Digital Health explanations are role based

• Explanations have to be meaningful.

 A physician requires different explanations as compared to a staffing planner or to a user.

 Explanations need to be provided with the proper language and also within the proper context

XAI in Digital Health how to solve these challenges?



the role of semantic technologies

How **semantic technologies** can improve the **explainability** and **interpretability** of AI-based system in order to make them more **acceptable** from users?

to integrate semantic technologies for enabling the generation of meaningful explanations

the role of semantic technologies explanation with background knowledge

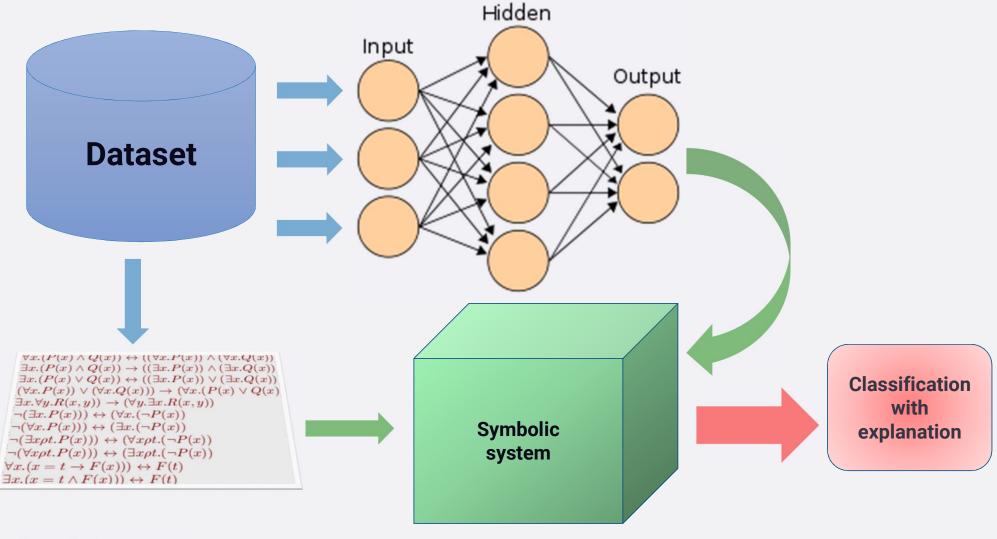
- We tend to give explanation in terms of our current knowledge.
- When we see any image of dog our thinking automatically try to capture those objects.
- We always want to conform with our previously acquired knowledge (Background Knowledge).

Will not it be better if we can explain in terms of our knowledge?

the role of semantic technologies how to use background knowledge?

- Hard to make connection between our knowledge and a model which is trained by reducing loss.
- Idea found in current literature is similar to inductive programming:
 - 1. Use background knowledge in the form of linked data and ontologies to help explain.
 - 2. Link inputs and outputs to background knowledge.
 - 3. Use a symbolic learning system to generate an explanatory theory.

the role of semantic technologies how to use background knowledge?



the role of semantic technologies input needed for these kind of systems

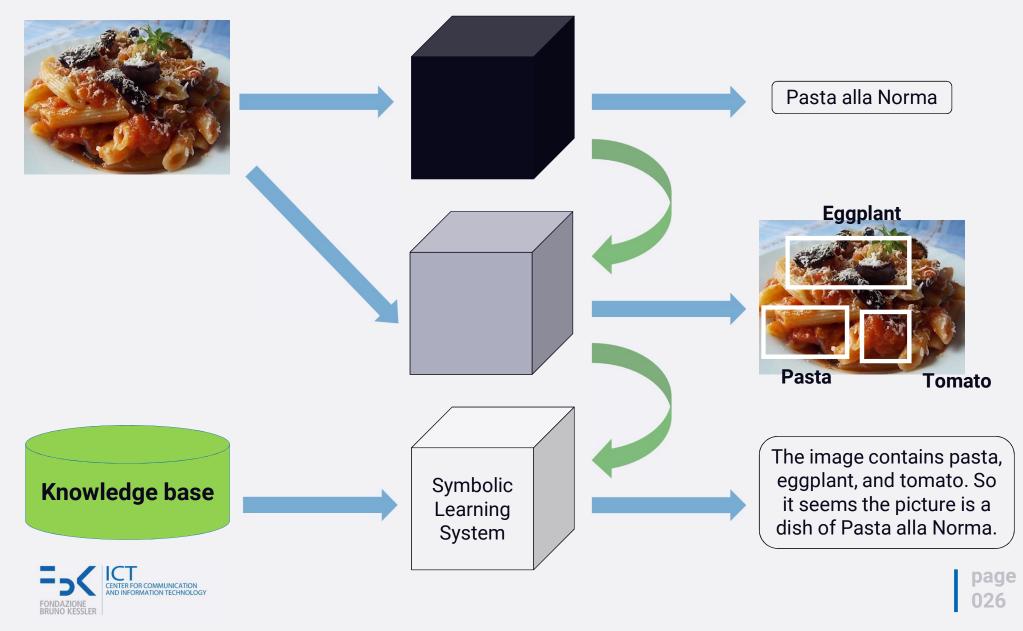
- Background information, ontology, and knowledge graphs
 - Common sense knowledge resources (e.g. Cyc, Wordnet, Suggested Merged Upper Ontology (SUMO), Dbpedia, Freebase)
 - Domain specific resources (e.g. HeLiS)
- Positive and/or negative examples containing concept-related contextual information.
- Mapping between model dataset and the ontology
 - mapping each instance as an individual and put it in exact hierarchy.

the role of semantic technologies pasta image classification example

- Images come with annotations of objects in the picture.
- Objects in image annotations became individuals (constants), which can be typed with the ontology.

contains Pasta contains Melanzane contains Pomodori contains Ricotta

the role of semantic technologies pasta image classification example



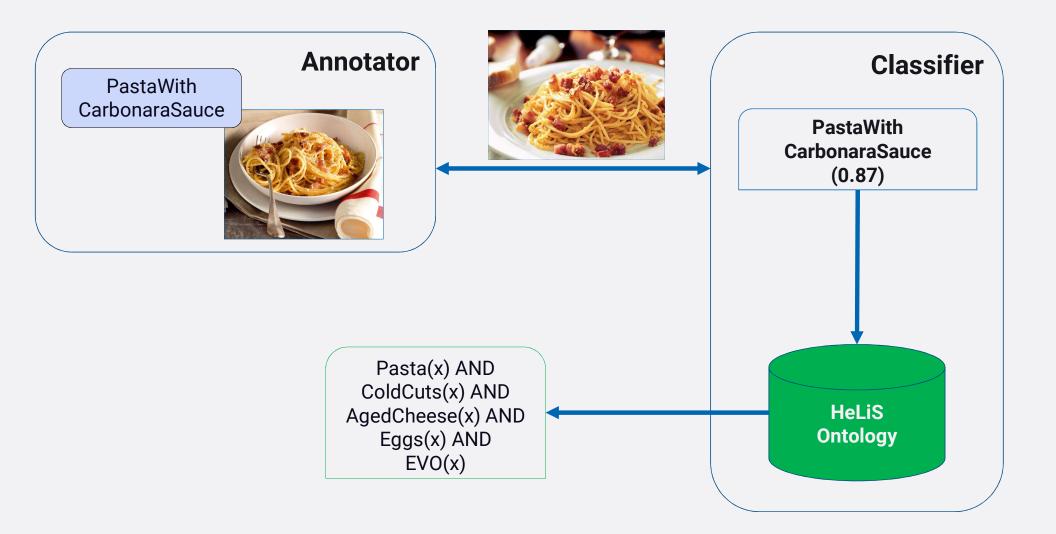
the role of semantic technologies open questions

• This is just beginning of using background information to enhance explanation.

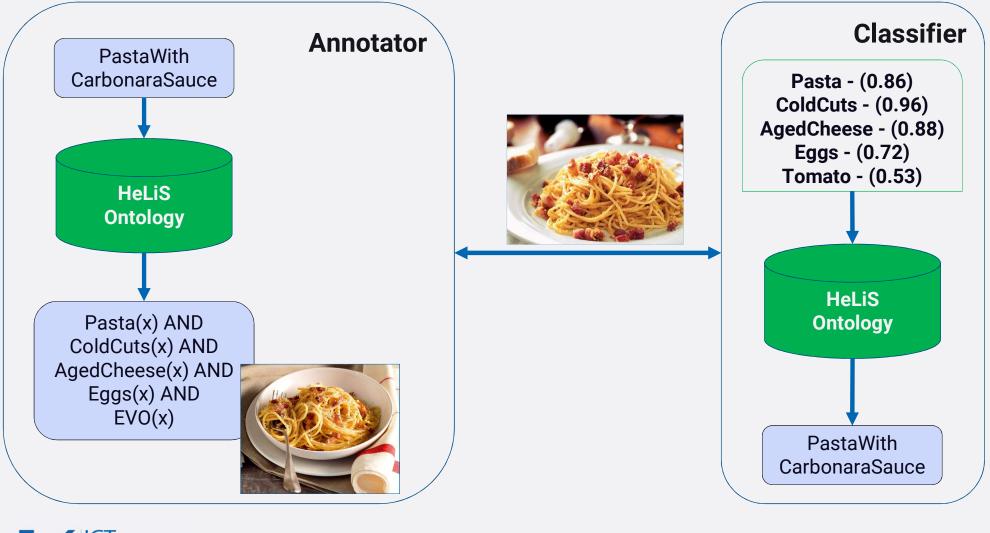
- There are some interesting open questions like:
 - Where we can get effective background information?
 - How to relate already available background information with models?
 - Are those explanations enough to satisfy users' quests?

to classify recipe images through the recognition of ingredients

food category recognition single-label annotation and classification



food category recognition multi-label annotation and classification



page 030

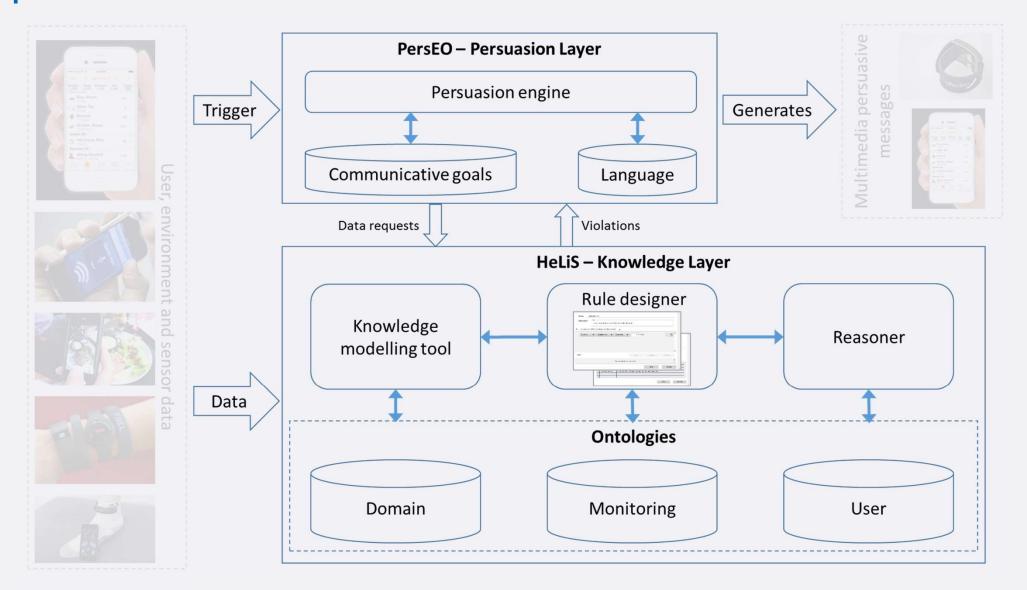
evaluation effectiveness of classification models

 Besides enabling explanations, we discovered that it can improve the effectiveness of classification models.

Method	Micro-AP (%)	Macro-AP(%)
Multi-label	76.24	50.12
Single-class (without uncertainty)	50.53	31.79
Single-class (with uncertainty)	60.21	42.51

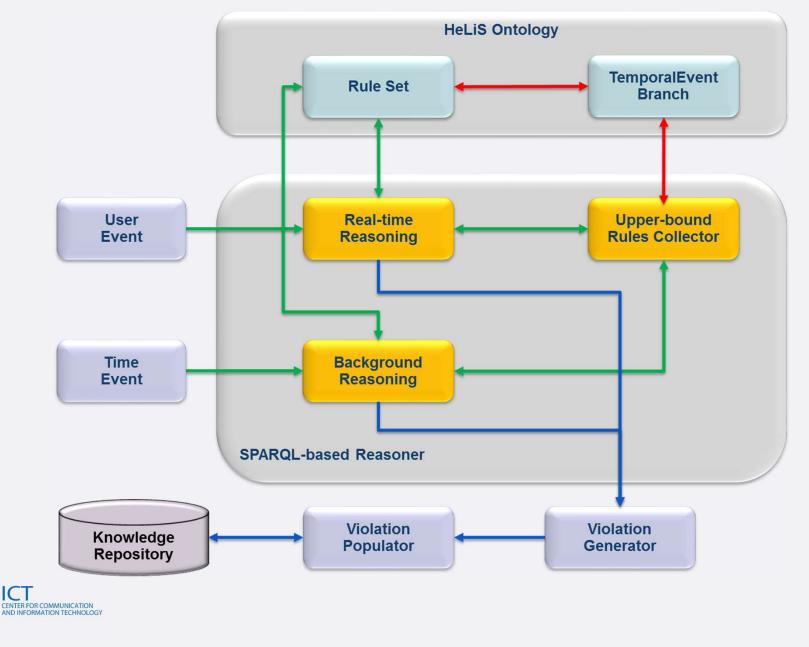
to provide recommendations to users by means of knowledge graphs

the HORUS.AI platform

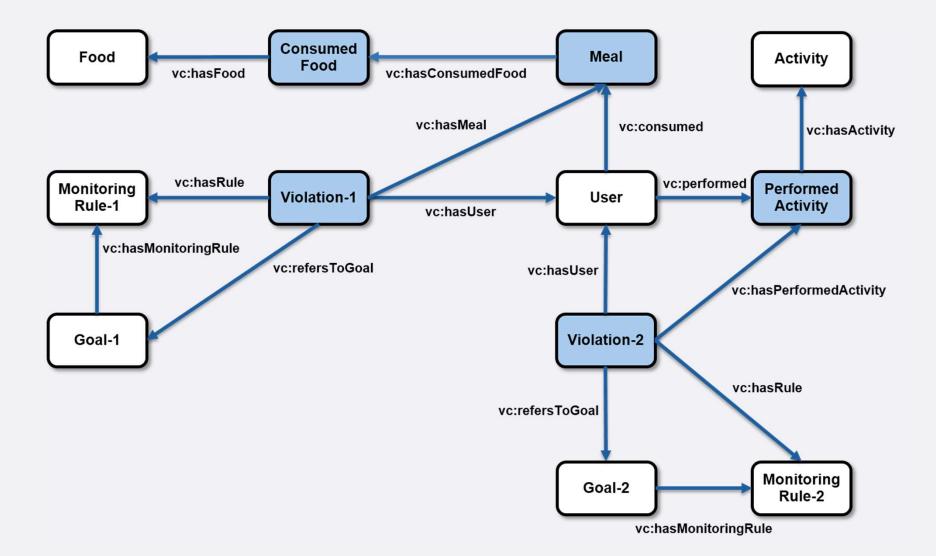


the knowledge layer the reasoning process

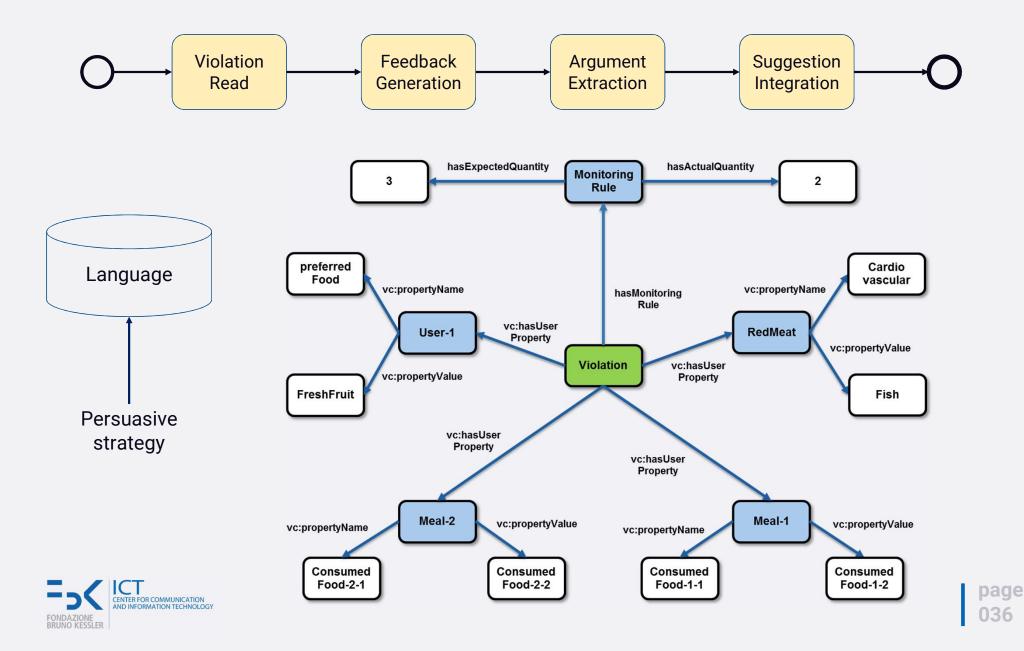
FONDAZIONE BRUNO KESSLER



the knowledge layer population of the knowledge base with undesired behaviors

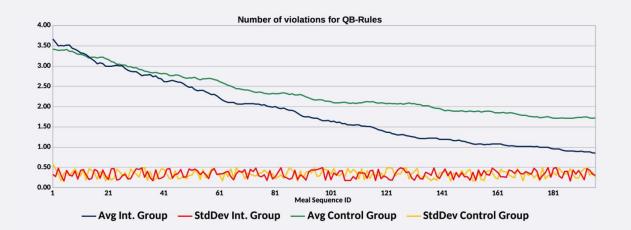


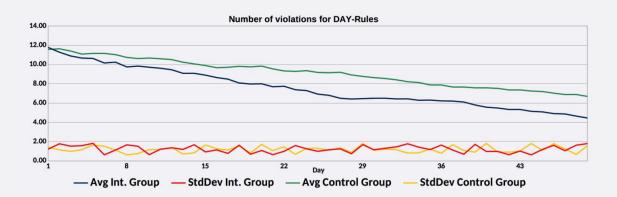
the persuasive layer message generator process

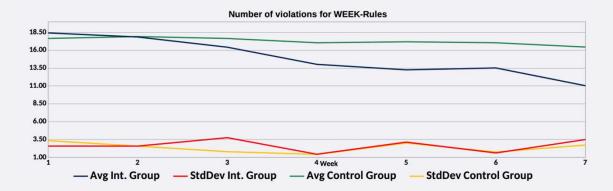


evaluation living lab

- The evaluation of explanations is an ongoing research activity.
- 120 users have been monitored for 7 weeks.
 - 92 users in the intervention group;
 - 28 users in the control group.
- We observed and reported the effectiveness of generated explanations.





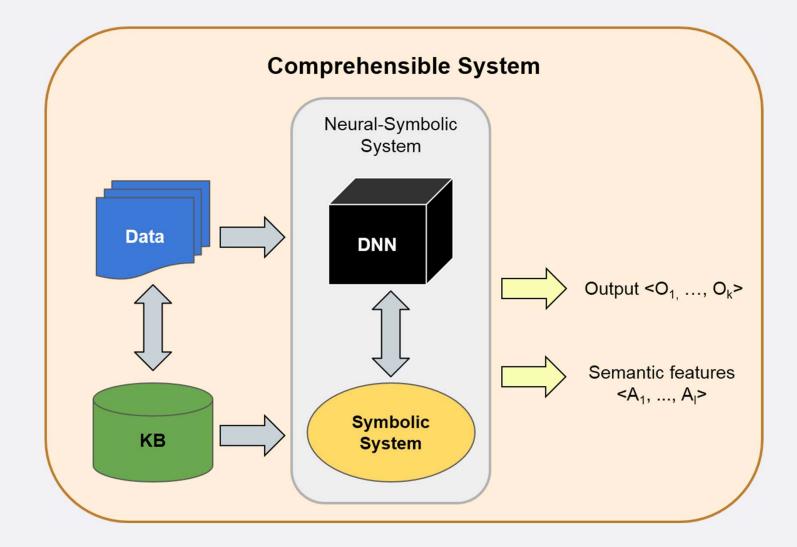


an appendix

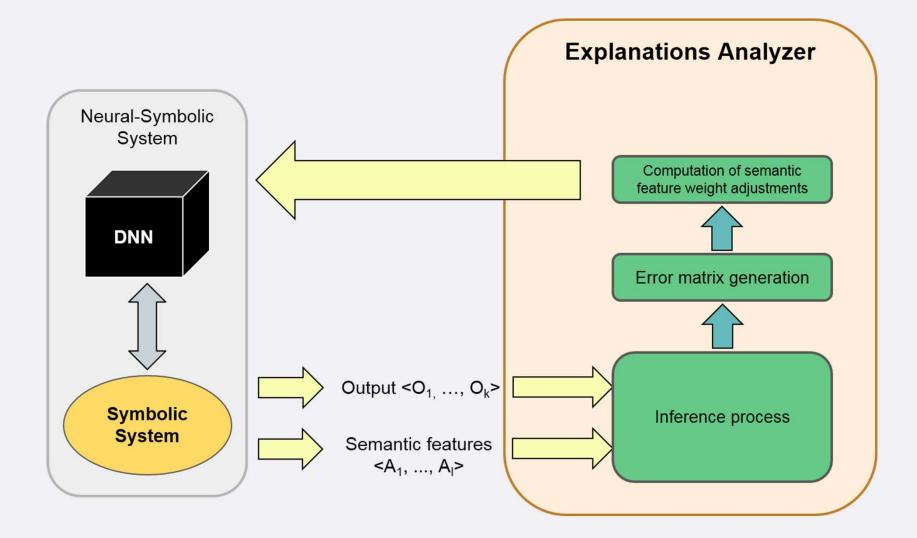
exploit XAI

Is there a way for **exploiting** the generated **explanations** in an efficient way for **improving the effectiveness** of our AI systems?

anatomy of a comprehensive system

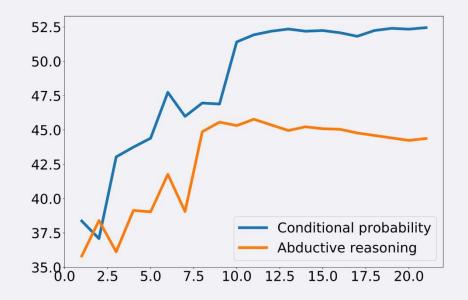


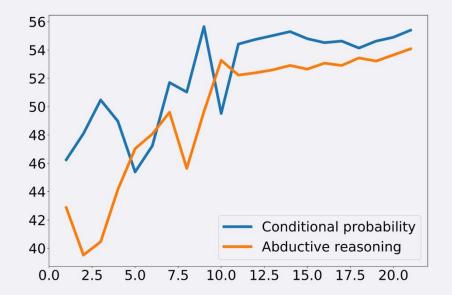
a way for exploiting explanations



does this exploitation strategy work?

Heuristic	Starting values (%)		Refined values (%)	
	Micro-AP	Macro-AP	Micro-AP	Macro-AP
Abductive reasoning	42.87	35.82	52.23 (+21.83%)	45.78 (+27.81%)
Conditional probability	46.25	38.37	54.42 (+17.66%)	51.93 (+35.34%)





final remarks

so, in the end?

final remarks take-home messages

- Explainable AI is motivated by real-world application of AI.
- Multi-disciplinary: multiple AI fields, HCI, social sciences (multiple definitions).
- Transparent design or post-hoc explanation?
- Background knowledge matters!
- Evaluation:
 - need of benchmark;
 - rigorous, agreed upon, human-based evaluation protocols.

contacts

Mauro Dragoni dragoni@fbk.eu

references

- M.G. Core, H.C. Lane, M. Van Lent, D. Gomboc, Steve Solomon, and Milton Rosenberg. Building explainable artificial intelligence systems. In AAAI, pages 1766-1773. MIT Press, 2006.
- E.H. Shortliffe and B.G. Buchanan. A model of inexact reasoning in medicine. Mathematical biosciences, 23(3-4):351-379, 1975.
- W. Swartout, C. Paris, and J. Moore. Explanations in knowledge systems: Design for explainable expert systems. IEEE Expert, 6(3):58-64, 1991.
- W.L. Johnson. Agents that learn to explain themselves. In 12th AAAI, pages 1257-1263, 1994.
- C. Lacave and F.J. Diez. A review of explanation methods for Bayesian networks. The Knowledge Engineering Review, 17(2):107-127, 2002.
- A. Newell, J.C. Shaw, and H.A. Simon. Chess-playing programs and the problem of complexity. IBM Journal of Research and Development, 2(4):320-335, 1958.
- J. Pearl. Causality: Models, Reasoning, and Inference (2nd Edition). Cambridge University Press, Cambridge, 2009.
- S.J. Gershman, E.J. Horvitz, and J.B. Tenenbaum. Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science, 349(6245):273-278, 2015.
- Z.C. Lipton. The mythos of model interpretability. arXiv:1606.03490, 2016.
- P. Kieseberg, E. Weippl, and A. Holzinger. Trust for the doctor-in-the-loop. European Research Consortium for Informatics and Mathematics (ERCIM) News: Tackling Big Data in the Life Sciences, 104(1):32-33, 2016.
- D. Doran, S. Schulz, and T.R. Besold. What does explainable ai really mean? A new conceptualization of perspectives. arXiv:1710.00794, 2017.
- G. Montavon, W. Samek, and K.-R. Müller. Methods for interpreting and understanding deep neural networks. arXiv:1706.07979, 2017.
- T. Miller, P. Howe, and L. Sonenberg. Explainable AI: Beware of inmates running the asylum or: How I learnt to stop worrying and love the social and behavioural sciences.arXiv:1712.00547, 2017.
- A. Holzinger, A.M. Carrington, H. Müller: Measuring the Quality of Explanations: The System Causability Scale (SCS). Künstliche Intell. 34(2): 193-198 (2020)
- M.K. Sarker, P. Hitzler. Explaining Input Output Relationship of Training Neural Networks : First Steps, Nesy 2019.
- B. Mittelstadt, C. Russell, and S. Wachter. Explaining explanations in Al. arXiv preprint arXiv:1811.01439 (2018).
- C. Rudin. Please Stop Explaining Black Box Models for High Stakes Decisions. arXiv preprint arXiv:1811.10154 (2018).
- D. Weld and G. Bansal. The challenge of crafting intelligible intelligence. Communications of ACM (2018).

